Search results for "Rate equations"

showing 3 items of 3 documents

Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

2012

We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.

DYNAMICSMaterials scienceAtmospheric escapeCondensed matter physicsExcitonGeneral Physics and AstronomyElectronRate equationThermal transferEPITAXYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySTATESself assembled quantum dots rate equations model carrier escape propertiesQuantum dotQuantum dot laserLUMINESCENCEPHOTOLUMINESCENCE
researchProduct

SIMULATION OF THERMAL EFFECTS IN OPTOELECTRONIC DEVICES USING COUPLED ENERGY-TRANSPORT AND CIRCUIT MODELS

2008

A coupled model with optoelectronic semiconductor devices in electric circuits is proposed. The circuit is modeled by differential-algebraic equations derived from modified nodal analysis. The transport of charge carriers in the semiconductor devices (laser diode and photo diode) is described by the energy-transport equations for the electron density and temperature, the drift-diffusion equations for the hole density, and the Poisson equation for the electric potential. The generation of photons in the laser diode is modeled by spontaneous and stimulated recombination terms appearing in the transport equations. The devices are coupled to the circuit by the semiconductor current entering the…

Materials scienceLaser diodebusiness.industryApplied MathematicsPhysics::OpticsSemiconductor deviceBackward diodeModified nodal analysislaw.inventionLoad linelawLaser diode rate equationsModeling and SimulationOptoelectronicsbusinessElectronic circuitVoltageMathematical Models and Methods in Applied Sciences
researchProduct

Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber

2009

International audience; This paper deals with the design of an erbium doped microstructured optical fiber (MOF) amplifier operating in the mid-infrared (mid-IR) wavelength range, more precisely around 4.5 µm wavelength. A homemade numerical code which solves the rate equations and the power propagation equations has been ad hoc developed to theoretically investigate the feasibility of mid-IR MOF amplifier. On the basis of the measured energy level transition parameters of a Er3+-doped Ga5Ge20Sb10S65 chalcogenide glass, the amplifier feasibility is demonstrated exhibiting high gain and low noise figure.

Finite element methodMaterials scienceOptical fiberChalcogenidePACS: 42.55.W 42.81.Q 42.60.D 02.70.Dchemistry.chemical_elementChalcogenide glassPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsInorganic ChemistryErbiumchemistry.chemical_compoundOpticslaw0103 physical sciencesElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFinite element method; Photonic crystal fiber amplifiers; Rate equationsSpectroscopyAstrophysics::Galaxy Astrophysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAmplifierOrganic ChemistryRate equationMicrostructured optical fiber021001 nanoscience & nanotechnologyPhotonic crystal fiber amplifiersAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthRate equationschemistry0210 nano-technologybusiness
researchProduct